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1 Introduction

We would like to make an estimation of area uncertainty based on an uncertainty of a
point. We will study different properties of polygons which represent parcels in real world.
For basic mathematical analysis we will first study triangles because all other polygons
can be studied as an analogy to them, and they represent the simplest of all poygons.

The general idea is that the position of the vertices of the polygon is not accurate but
uncertain and distributed according to some distribution. To make a good approximation
of the real world uncertainty we picked two-dimensional, radial symmetrical Gaussian
distribution (normal distribution). An example for three different triangles can be seen
on Figure 1. The uncertainty of any vertex is an input parameter and as output we
will study area uncertainty (that can depend on area or perimeter) and limits within our
model is a good description.
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Figure 1: Different triangles and radial symmetrical normal distribution of uncertainty of
a point around vertices

2 Mathematical background

We will use some basic mathematical properties of a rectangle: area A:

A =
1

2
[x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)], (1)

and perimeter p

p = a+b+c =
√

(x2 − x1)2 + (y2 − y1)2+
√

(x3 − x3)2 + (y3 − y2)2+
√

(x1 − x3)2 + (y1 − y3)2,
(2)
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Figure 2: Triangle with sides and vertices

where xi, yi are the coordinates of vertices and a, b, c are the sides of the triangle as it can
be seen on Figure 2.
Area uncertainty of a polygon can be defined analytically [1] as

σ2
AN =

1

4

N
∑

i=1

[∆y2
i−1,i+1 + ∆x2

i−1,i+1]σ
2
0 , (3)

where σ0 is the uncertainty of a vertex (we assume that is is the same for all vertices),
and (xi, yi) are the exact values of the coordinates. In case of triangle the above equation
can be simplyfied into

σ2
AN =

1

4
[(y3 − y1)

2 + (x3 −x1)
2 + (y1 − y2)

2 +(x1 − x2)
2 + (y2 − y3)

2 + (x2 −x3)
2]σ2

0 . (4)

3 Numerical analysis - study of triangles

We want to compare analytical area uncertainty (4) with numerical area uncertainty that
we calculate from the distribution of vertices. For each triangle we perform Monte Carlo
simulation – we randomly pick a point around each vertex according to normal distribu-
tion N times. For each index i we join the three randomly picked points into a triangle
and calculate area and after having N values for area we can calculate area distribution
and area uncertainty. We repeat this for M different triangles.

The interval where we pick points is limited to [0, a], a = 1 and we choose N = 105 and
M = 1000 unless differently said. For vertex uncertainty σ0 we choose σ0/a = 0.01.

The area distribution for one particular triangle can be seen on Figure 3 (a). The red line
represents the average area value (Ā), which is the same as the area, calculated from the
exact value of vertices A [equation (1)]. On Figure 3 (b) we can see the distribution in
a histrogram form. We can see that the area distribution is also a normal distribution.
Numerical area uncertainty – σN – can be interpreted as the standard deviation of this
distribution.
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Figure 3: (a) The distribution of numerically calculated areas around analytical area (red
line); (b) histrogram of the distribution - it is the normal distribution and the standard
deviation correspondes to analytical area uncertainty [equation (4)].

3.1 Area uncertainty dependancy on area

We would like to know what area uncertainty σN depends on. First we look at the
correlation between area uncertainty and area on Figure 4 (a). We can see that area
uncertainty is limited downwards – when the area is large enough we can not expect
uncertainties to be small; but at one particular area we can get many different values of
uncertainties. On Figure 4 (b) we see area uncertainty squared – σ2

N – here too we can
see the bottom line but nothing specific can be said about area uncertainty at a given area.

It can be easily seen that we get the same result if one side of a triangle is parallel to x
axis. From now on we will study triangles, defined with vertices {{0, 0}, {x2, 0}, {x3, y3}}
unless otherwise stated. From Figures 4 we can see that the area alone is not a very good
parameter when studying general shapes of triangles (or other polygons). At the same
area values we can get many different values of area uncertainties. We can assume that
the shape of the triangle could also be an important property to study.
However, if we observe relative area uncertainty σ/A, we can see the potential trend –
Figure 4 (c). For smaller areas we have big relative area uncertainty (REA) and as the
area gets larger the relative area uncertainty gets smaller. This result will be studied in
much more detail on the case of 3 rectangles.
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Figure 4: (a) Area uncertainty dependancy on area – σA(A); (b) the square of area
uncertainty dependancy on area – σ2

A(A); not much can be said about the correlation of
both, at one particular area we can have many values of uncertainty; (c) relative area
uncertainty dependancy on area is apower law. All variables are represented in non-
dimensional form.
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3.2 Area uncertainty dependancy on perimeter

On Figure 5 we can see the area uncertainty dependancy on perimeter of the triangle
σ(p). The trend is limited between two linear borders that can be interpreted as two limit
shapes of triangles - equilateral triangle and a special type of isosceles triangle that has
one side much shorter than the other two sides.

Analytically we can see that from equation (4):

σ(equilateral) =

√

3a2

4
σ0 =

√

3p2

36
σ0 =

p

2
√

3
σ0,

σ(isosceles) =

√

2a2

4
σ0 =

√

p2

8
σ0 =

p

2
√

2
σ0,

where in the equilateral case we insert p = 3a and in the isosceles case p = 2a (the short
side being practically 0). The bottom border are the equilateral triangles , the upper
border the isosceles triangles.
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Figure 5: Area uncertainty dependancy on perimeter: it is limited between two linear
borders, the upper representing the isosceles triangles and the lower representing the
equilateral triangles. All variables are represented in non-dimensional form.

Next thing we can observe is how area uncertainty depends on area at a constant perime-
ter. We believe this will give us some new information about an impact of the shape of
a triangle on area uncertainty. For one particular triangle we can see the behaviour on
Figure 6. The area uncertainty is smallest at the biggest area, at small areas we have two
borders: the upper and the lower.

From all cases we can find out the ones with the smallest area uncertainty and we can
draw a few – Figure 7 (a). We can see these are the triangles who are shaped like equi-
lateral triangles or are similar to equilateral triangles. The same can be done for the case
of small area and great area uncertainty – we look at the triangles, represented by the
points in the upper left part of graph from the Figure 6. They are shown on Figure 7
(b). As we see these are the ones, similar to isosceles triangles with one side much shorter
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Figure 6: Area uncertainty dependancy on area at constant perimeter; the smallest un-
certainty belongs to the triangles with the biggest area – these are the equilateral-like
ones; the biggest uncertainty belongs to another special type of trinagles - isosceles-like
with very small angles between the longer sides.

than the other two.
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Figure 7: (a) Triangles with the smallest area uncertainty – the ones that lie on the right
side of the graph from Figure 6 – they are similar to equilateral triangles; (b) triangles
with the biggest area uncertainty – they are similar to isosceles triangles with one side
much shorter than the other two.

We can observe the borders in more detail; for that purpose we do not generate the trian-
gles randomly but we observe only equilateral and isosceles triangles – we want to learn
more about convergence to analytical boders. On Figure 8 (a) we can see the convergence
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for an interval of small ratios vertex uncertainty/side (σ0/a ∼ 0.01). The special case of
isosceles triangle was generated with the ratio between the shorter and the longer side
k = 10. We can see that the convergence is good.
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Figure 8: Convergence to the borders of equilateral triangle (green line) and iscosceles
triangle (red line): the dependancy of the area uncertainty on perimeter – σ(p); (a) small
ratio σ0/a ∼ 0.01; (b) bigger ratio σ0/a ∼ 0.1; (c) large ratio σ0/a ∼ 0.5; a is the size of
the side
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Now we enlarge the uncertainty of the vertices on ratio σ0/a ∼ 0.1. – Figure 8 b. We
can see that the equilateral triangles still converge, but the isosceles are already under the
limit of convergence. We can also see that for small values of p/σ0 the numerical model
isn’t good anymore. If we numerically calculate uncertainty with statistcs from Monte
Carlo we can never get to uncertainty that would equal to zerro (even if the sides are
very small and analytically uncertainty limits to zerro). That can be even better seen on
Figure 8 (c), where the ratio σ0/a ∼ 0.5 which is quite large.

We can get an analog information if we observe when numerically calculated area (the
average of all triangles obtained with Monte Carlo) starts to differ from the analytical
area. On Figure 9 we see this happens when the ratio between perimeter and area is
p/σ0 ≈ 10.
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Figure 9: The difference between numerically and analytically calculated area that de-
pends on perimeter – practically this expains at which ratio p/σ0 we can no longer trust
the numerical calculation. The red points represent the equilateral case, the green ones
isosceles. We can see this happens at ratio p/σ0 ∼ 10 – when uncertainty of a vertex is
one third of a side of a triangle (in case of equilateral triangle). Based on this result we
will only use sides greater than 3 σ0 in future simulations.

3.3 Uncertainty of uncertainty

We would like to know how uncertain is area uncertainty. We know that area uncertainty
represents the standard deviation of the area distribution. Now we want to see how the
area uncertainty changes with the number of triangles included in a Monte Carlo simula-
tion.

On Figure 10 (a) we can see how the average area uncertainty behaves as we make M , the
number of triangles, greater. When M is small, the distribution is not well defined and
area uncertainty changes its value a lot; when M gets bigger, the numerically calculated
uncertainty converges towards the analytical value of area uncertainty [equation (4)]. On
Figure 10 (b) we can see the uncertainty of the area uncertainty – this too at the small
number of triangles changes a lot but than converges. Another thing we can observe is
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the distribution of the area uncertainty – Figure 11, which is also normal. From all these
we can conclude that the uncertainty of the area uncertainty is a standard deviation of
area uncertainty.
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Figure 10: (a) The convergence of area uncertainty towards the analytical value when M
– the number of triangles in Monte Carlo simulation – gets bigger; (b) the uncertainty of
area uncertainty. Both examples are done for one randomy chosen triangle.
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Figure 11: The distribution of area uncertainty is also a normal distribution and there-
fore the uncertainty of area uncertainty can be interpreted as a standard deviation of
uncertainty.
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3.4 Buffer analysis

Untill now we have analyzed area uncertainty based on vertex uncertainty. Another
perspective is the buffer analysis. For the width of the buffer we take the same value as
we usually took for the uncertainty of the vertex, σ0. Inside and outside of the triangle
we draw the buffer as it can be seen on Figure 12.

Σ0

Σ0

Figure 12: Triangle with an outer buffer (blue line) and inner buffer (green line)

We will observe two variables: buffer area AB, that is the area of the outer and inner
buffer, and full area, that is the area of the triangle together with the area of outer buffer,
AF . We will compare buffer area AB with area uncertainty σA and full area AF with
the average area Ā of the triangle. To do that we will observe the correlation between
variables. For the calculation of σA and Ā we still use Monte Carlo simulation – for each
of the M triangles we do N perturbations while buffer is calculated only once for each of
M triangles.

On Figures 13 we can see the comparisons for three different ratios σ0/a. On Figure 13
(a) we see the correlation between area uncertainty σA and buffer area AB, corr(σA, AB)
at σ0/a = 0.01. On Figure 13 (c) we observe the same variable, just with ratio σ0/a = 0.1
and on Figure 13 (e) σ0/a = 0.5. From these Figures we see something similar to what
we have seen on Figures 5 and 8 – there exists a trend, limited between two limit cases
of triangles which are shaped as equilateral triangle and isosceles triangle. At large ratios
σ0/a that corresponde to large buffer width we can see that we no longer have the linear
trend.

On Figures 13 (b), (d) and (f) we see the correlation between average triangle area Ā and
full buffer area AF . At small ratios σ0/a the correlation is linear but when the ratio (and
buffer width) gets bigger, we no longer have the linear trend. That makes sense - when the
buffer area is comparable to triangle area, some small values of area can never be obtained.
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Figure 13: Correlation between area uncertainty σA and buffer area AB - (a), (c), (e);
correlation between full area AF (outer buffer + triangle) and average triangle area Ā- (b),
(d), (f); from top to bottom we change the ratio between the point uncertainty and the
side of a triangle – σ0/a = 0.01 for (a) and (b), σ0/a = 0.1 for (c) and (d), σ0/a = 0.5 for
(e) and (f).

From Figures 13 we can see that buffer is a variable, correlated with variables we have
used so far – average area Ā and area uncertainty calculated from vertex uncertainty σA

– but it does not give us new information about the problem of area uncertainty.

3.5 Effective area uncertainty

Untill now we have calculated area uncertainty as standard deviation – with an iteration

σA =

√

√

√

√

1

N

∑

N

(A − Ā). (5)

Besides this uncertainty we can also look at the effective uncertainty – the only difference
is that now in iteration we do not observe the difference between temporary and average
area value but the differences between the temporary and analytical area value.

12



σeff =

√

√

√

√

1

N

∑

N

(A − AAN ). (6)

On Figure 14 a we can see σeff and analytically calculated uncertainty σAN [equation (4)]
– they both depend on the length of a side a. We study this on the case of isosceles triangle
with a constant perimeter p = 2 and ratio vertex uncertainty/side σ0/a = 0.01. Analytical
uncertainty is the concave curve, σeff is the one that differs from it (red points). The best
similarity is at minimum of both uncertainties, the worst is on the borders of the interval,
at very small and very big a/σ0. This result is the same as things discovered so far –
the most problematic (the ones with the biggest area uncertainty) are those (isosceles)
triangles which have one side very short or very long – at a → 0 the ones that can be
seen on Figure 7 (b), at a → p/2 the ones with a large obtuse angle between equally long
sides. The smallest uncertainty is at a = p/3, which means equilateral triange.

On Figure 14 (b) we see the difference between numerically calculated area from analit-
ically calculated area, on Figure 14 (c) we can see the absolute difference between both
areas ∆A = ANUM − AAN . In this example too the biggest difference is on the borders,
in case of very small or very big angles at the top of isosceles triangles.
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Figure 14: (a) Effective uncertainty σeff (red curve) in comparison to analytically calcu-
lated uncertainty σAN (black curve) for the case of isosceles triangles with a side a and
constant perimeter p/σ0 = 200; (b) comparison of numerical (red line) and analytical area
(black line); (c) The difference between both areas.
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4 Numerical analysis - study of rectangles

So far we have seen some properties about area uncertainty from the study of triangles.
Now we would like to compare some results with the study of rectangles, first in general
and then for some specific cases in more detail. We use the exact some procedures and
formulas for simulation.

On Figure 15 we can see how area uncertainty depends on area. We can see that in general
absolute area uncertainty grows with area and that at one particular area we can have
different values of area uncertainty. Figure 15 is similar to Figure 4 (a) – area uncertainty
dependancy on area for triagles.

Figure 15: Normalized area error (area uncertainty) dependancy on normalized area for
a rectangle; σ - area uncertainty, A -area, σ0 - vertex uncertainty; In general, area uncer-
tainty grows with area; at one particular area A/σ2

0 we still can have different values of
σ and the small ones correspond to the most regular shape - square like and the bigger
ones correspond to elongated rectangles.

The same comparison can be done for relative area uncertainty σ/A - Figure 16. Here we
can also see the power law trend. Figure 16 is similar to Figure 4 (c).

Let’s compare the dependancy of area uncertainty on perimeter – Figure 17. We again
have two borders - the upper represents the elongated rectangle and the lower represents
the square - just like in the case of triangles where the upper border was an equilateral
triangle and the lower border was an isosceles triangle. Figure 17 is similar to Figure 5.

Another thing we compare is the behaviour of area uncertainty at constant perimeter and
different areas. In the case of triangles we have seen the shape on Figure 6. We remember
that the smallest area uncertainties corresponded to the regular-like shape – equilateral
triangle and the biggest uncertainties correpsonded to the most irregular shape - elongated
isosceles triangles and ones similar to them. Area uncertainty dependancy on area at a
constant perimeter for rectangles can be seen on Figure 18. This time both graphs are
a bit different – on Figure 18 we have just one linear trend while on Figure 18 we had a
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Figure 16: Relative area error dependancy on normalized area for a rectangle; σ - area
uncertainty, A -area, σ0 - RMSE; for parcels, smaller than A/σ2

0 = 1000 - that is if
σ0 = 1m, A = 1000m2 - relative area error is more than 10%. At one particular normalized
area A/σ0 we still can have different values of σ/A and the small ones correspond to the
most regular shape - square like.

Figure 17: Absolute normalized area error (area uncertainty) dependancy on perimeter
for a rectangle; σ - area uncertainty, o -perimeter, σ0 - RMSE; σ grows with perimeter
between two borders - the upper border corresponds to an elongated rectangle and the
lower to a square; all rectangles fall in between

greater area - linear trend on top and a curve on bottom and everything in between in
the middle. For triangles the linear trend corresponded to isosceles triangles with small
angle between equal sides and the curve corresponded to isosceles triangles with big angle
between equal sides. Here, in case of rectangles, we do not have two kinds of elongated
rectangles - rectangle can either be elongated with large ratio between both sides or more
square-like. That is why we have only one trend on Figure 18.

On Figure 19 we can see the relative area uncertainty that depends on area at constant
perimeter.
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Figure 18: Absolute normalized area error (area uncertainty) dependancy on area at
a constant perimeter for a rectangle; σ - area uncertainty, A -area, σ0 - RMSE; this
graph shows dependancy on how elongated the rectangle is; all rectangles have the same
perimeter here and the ones with the smallest σ and the biggest A are squares, the ones
with the biggest σ and the smallest A are most elongated. Between these two limits is a
linear trend.

Figure 19: The same as the above graph, just for relative area error - here we can’t see
the linear trend, so for the study of behaviour at constant perimeter it’s better to observe
the absolute area uncertainty

To sum up, rectangles have the same or very similar area uncertainty properties as trian-
gles.
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5 3 cases of rectangles

Now we want to study three special cases of rectangles which have the same area but differ-
ent shapes. So far we have observed variables in general, now we want to do some number
comparison. Our hypothesis is that area uncertainty largely depends on the shape, not
only on area (as we have seen on Figures 4, 15 and 16 we can have many different values of
area uncertainty at one particular area when we observe triangles or rectangles in general).

Three cases are: long rectangle, Figure 1 (a), that has ratio between longer and shorter
side a/b = 30, middle rectangle, Figure 1 (b), with ratio a/b = 10 and square, Figure 1
(c), with a = b.

a

b

a

b

a

b

Figure 20: Three types of rectangles: (a) long rectangle, a/b = 30; (b) middle rectangle
a/b = 10 and (c) square with a = b. They all have the same area.

We will scan a whole interval of areas, from a few 10 m2 to two million m2. The only limit
is the any side of any rectangle shoud not be shorter than RMSE or vertex uncertainty
times three (3 σ0). To make information more readable we show area scales in ha= 105m2.

We will study six types of uncertainties:

• DOP (digital ortophoto): the only parameter is uncertainty of a vertex, RMSE. We
estimate it on 1m. Set of parameters is (1m, 0, 0).

• DOP + DIG: 2 parameters, uncertainty of a vertex and uncertainty caused by
digitalization. Set of parameters is (1m, 0.4036 m, 0).

• DOP+ DIG + INT: 3 parameters, RMSE, uncertainty caused by digitalization and
uncertainty caused by interpetation. Set of parameters is (1m, 0.4036 m, 1m).

• ETS1: comparison of two cases, first is DOP + DIG + INT with parameters (1m,
0.4 m, 1m), second is DOP + DIG with parameters (2.5m, 0.4 m, 0m) - in the
second case we take bigger RMSE.
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• ETS2: comparison of two versions of the same case with parameters (1m, 0.4 m,
1m) for the first version and (1 m, 0.4 m, 0) for the second version. Because DOP
uncerainty is the same in both versions we don’t use it in calculation.

• OTS: comparison between DOP and on the spot control; first case with parameters
(1m, 0.4 m, 1m) and second case with parameters (0.1948 m, 0 m, 0 m).

In first three types (DOP, DOP + DIG and DOP+ DIG + INT) we have only one set of
parameters, in last three types we have two sets of parameters - that is because in first
three cases we calculate area uncertainty directly while in last three cases we compare
two digitalizations.

5.1 Model

Let’s look at the six above types in more detail:

In the first case (DOP), to simulate the uncertainty of a vertex we take coordinates of
an exact polygon (rectangle) and perform Monte Carlo on them. We calculate the area
and the uncertainty of the area for each polygon. The result is the distribution of area
that has a Gaussian shape – normal distribution. The average area is limiting towards
the analytical value of area [equation (1)] as N , the number of times Monte Carlo was
performed, grows.

For digitalization uncertainty (DIG) we used results from authors [2], specifically the
relationship between the distribution of error and the turning angle. The distribution
can be transformed into normal distribution with σ = 1.58 for angles π/2, and for digi-
talization 1:1000 this gives 0.4036 m. Because RMSE and digitalization uncertainty are
not correlated, in the DOP + DIG case we can again use normal distribution with σ =√

1 + 0.40362= 1.078.

Uncertainty caused by interpretation (INT): this time we estimate the error around sides
of a rectangle. Again, we randomly choose from normal distrubution with σ = 1, but only
once for all vertices. In this way we get an envelope around a rectangle (inside or outside).

For ETS we calculate relative error: now we want to compare two digitalizations. We
run Monte Carlo twice and look at the difference between both results. Average area and
average uncertainty of area in both cases shoud limit towards the same value (the exact
value of the area) but if we look at the difference between digitalizations, we can get an
estimate for relative area error.

Mathematically, we define relative area error as

∆ =
A2 − A1

A1

=
A2

A1

− 1, (7)

where A1 is the area of the rectangle in the first case and A2 is the area in the second
case.
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In exact case, where A1 = A2, ∆ = 0. But in Monte Carlo A1n and A2n for the n - th
try are probably not the same. We can calculate the uncertainty of relative area error by
making a total derivative of the equation (7).

d∆ = d
(

A2 − A1

A1

)

= d
(

A2

A1

− 1
)

=
dA2

A1

−
A2

A2
1

dA1. (8)

From here, we get

σ(∆) =

√

√

√

√

1

A2
1

σ2(A2) +
A2

2

A4
1

σ2(A1). (9)

In other words, we have the probability distribution dP/dA1 for the first measurment and
dP/dA2 for the second measurment; now we can calculate the probability distribution of
the relative difference between them:

dP

d
∣

∣

∣

A1−A2

A1

∣

∣

∣

. (10)

The standard deviation of the above distribution equals to the expression (9); when we
are performing Monte Carlo, we are calculating σ directly but results are the same as
theory predicts.

For OTS we use the same procedure as for ETS.

5.2 Results

We will look at the results for our three rectangles from Figure 20. We observe two things:
how relative area error

REA = σ/A

depends on area and how ”2 σ” interval depends on area.”2 σ” is actually 1.96 σ (repro-
ducibility limit). We can see area uncertainty – ”σ” interval and 1.96 σ – ”2 σ” interval
on Figures 21. ”σ” interval includes 67% of all cases – Figure 21 (a) and ”2 σ” interval
includes 95% of all cases – Figure 21 (b). The expression relative area error means the
same as relative area uncertainty.

On Figure 22 we can see the shape of REA(A). It is a power law and therefore hard to
read for greater areas A. Because of that we will use logarithmic scales from now on, the
results will be presented as linear functions. In order to make results more readable some
data is collected also in tables.
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Figure 21: (a) Normal distribution of area for DOP type with ”σ” and ”2 σ” interval;
(b) normal distribution of relative difference of areas for ETS type with ”σ” and ”2 σ”
interval;
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Figure 22: Linear scale example for DOP – for larger areas it is hard to read details
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5.3 DOP

On Figure 23 we see relative area error that depends on area. On Figure 24 we see the
”2 σ” interval. For small areas uncertainties are around 9% for square, 20% for middle
rectangle and more than 30% for long rectangle. For ”2 σ” scenario they are exactly 1.96
times value at ”σ” at the same area. We can see that more elongated rectangles have
much greater relative area error than squares at the same area. In Table 1 (first column)
are listed areas (in ha) at REA = 3%, 5%, 7%. In Table 2 (first column) are listed areas
where 1.96 σ/A is 3%, 5%, 7%.
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Figure 23: DOP, REA; red line - long rectangle; green line - middle rectangle; blue line -
square.
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Figure 24: DOP, ”2 σ” interval; red line - long rectangle; green line - middle rectangle;
blue line - square.

5.4 DOP + DIG

On Figure 25 we see relative area error that depends on area for DOP + DIG scenario.
On Figure 26 we see the ”2 σ” interval. In Table 1 (second column) are listed areas (in
ha) at REA = 3%, 5%, 7%. In Table 2 (second column) are listed areas where 1.96 σ/A
is 3%, 5%, 7%.
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Figure 25: DOP + DIG, REA; red line - long rectangle; green line - middle rectangle;
blue line - square.
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Figure 26: DOP + DIG, ”2 σ” interval; red line - long rectangle; green line - middle
rectangle; blue line - square.

5.5 DOP + DIG + INT

On Figure 27 we see relative area error that depends on area for DOP + DIG + INT
scenario. On Figure 28 we see the ”2 σ” interval. In Table 1 (third column) are listed
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areas (in ha) at REA = 3%, 5%, 7%. In Table 2 (third column) are listed areas where
1.96 σ/A is 3%, 5%, 7%.
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Figure 27: DOP + DIG + INT, REA; red line - long rectangle; green line - middle
rectangle; blue line - square.
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Figure 28: DOP + DIG + INT, ”2 σ” interval; red line - long rectangle; green line -
middle rectangle; blue line - square.
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% DOP DOP + DIG DOP + DIG + INT
3 0.22 0.26 1.16
5 0.08 0.09 0.42
7 0.04 0.04 0.21

3 1.125 1.31 5.86
5 0.40 0.47 2.11
7 0.21 0.24 1.04

3 3.31 3.98 17.2
5 1.20 1.41 6.18
7 0.61 0.71 3.16

Table 1: Area that has bigger relative area uncertainty than the percent on the left in
ha = 105m2; Upper triplet: square; middle triplet: middle rectangle; lower triplet: long
rectangle

% DOF DOF + DIG DOF + DIG + INT
3 0.85 1.00 4.48
5 0.31 0.36 1.62
7 0.15 0.18 0.83

3 5.04 5.09 22.3
5 1.83 1.83 8.11
7 0.92 0.95 4.04

3 14.9 14.9 66.26
5 5.39 5.40 23.87
7 2.71 2.77 12.18

Table 2: Area that has bigger ”2 σ” error than the percent on the left in ha = 105m2

for ”2 σ” interval (95%); Upper triplet: square; middle triplet: middle rectangle; lower
triplet: long rectangle
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5.6 ETS1

On Figure 29 we see relative area error that depends on area for ETS1 scenario. On
Figure 30 we see the ”2 σ” interval. In Table 3 (upper half) are listed areas (in ha) at
REA = 3%, 5%, 7%. In Table 3 (bottom half) are listed areas where 1.96 σ/A is 3%, 5%,
7%.
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Figure 29: ETS1, REA; First (DOP, DIG, INT) = (1m, 0.4 m, 1m), Second (DOP, DIG,
INT) = (2.5 m, 0.4m, 0)

% Square Middle Long
3 2.60 12.99 38.45
5 0.93 4.66 13.83
7 0.48 2.41 7.20

3 9.86 50 148.37
5 3.62 18.01 53.80
7 1.80 9.17 2.35

Table 3: Area that has bigger relative area uncertainty than the percent on the left in
ha = 105m2 for ETS1 model. Upper half: REA – 1 σ interval (67%), lower half: ”2 σ
interval (95%)
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Figure 30: ETS1, ”2 σ” interval; First (DOP, DIG, INT) = (1m, 0.4 m, 1m), Second
(DOP, DIG, INT) = (2.5 m, 0.4 m, 0)

5.7 ETS2

On Figure 31 we see relative area error that depends on area for ETS2 scenario. On
Figure 32 we see the ”2 σ” interval. In Table 4 (upper half) are listed areas (in ha) at
REA = 3%, 5%, 7%. In Table 4 (bottom half) are listed areas where 1.96 σ/A is 3%, 5%,
7%.

% Square Middle Long
3 0.96 4.87 14.45
5 0.34 1.74 5.09
7 0.17 0.88 2.61

3 3.68 18.86 55.73
5 1.31 6.77 20.04
7 0.69 3.34 10.09

Table 4: Area that has bigger relative area uncertainty than the percent on the left in
ha = 105m2 for ETS2 scenario; upper half: REA – 1 σ interval (67%), lower half ”2 σ”
interval (95%).
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Figure 31: ETS2, REA; First (DOP, DIG, INT) = (0m, 0.4m, 1m), Second (DOP, DIG,
INT) = (0m, 0.4m, 0m)
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Figure 32: ETS2, ”2 σ” interval; First (DOP, DIG, INT) = (0m, 0.4m, 1m), Second
(DOP, DIG, INT) = (0m, 0.4m, 0m)

5.8 OTS

On Figure 33 we see relative area error that depends on area for OTS scenario. On Figure
34 we see the ”2 σ” interval. In Table 5 (upper half) are listed areas (in ha) at REA =
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3%, 5%, 7%. In Table 5 (bottom half) are listed areas where 1.96σ/A is 3%, 5%, 7%.
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Figure 33: OTS, REA; First (DOP, DIG, INT) = (1m, 0.4m, 1m), Second (DOP, DIG,
INT) = (0.195m, 0.0, 0)
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Figure 34: OTS, ”2 σ” interval; First (DOP, DIG, INT) = (1m, 0.4m, 1m), Second (DOP,
DIG, INT) = (0.195m, 0.0, 0)
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% Square Middle Long
3 1.16 5.86 17.47
5 0.42 2.11 6.35
7 0.21 1.12 3.17

3 4.48 22.45 66.514
5 1.63 8.11 24.03
7 0.83 4.04 12.29

Table 5: Area that has bigger relative area uncertainty than the percent on the left in
ha = 105m2 for OTS scenario. Upper half: REA – 1 σ interval (67%), lower half: ”2 σ”
interval (95%);

5.9 Comparison of REA and ”2 sigma” interval

In previous tables we have compared areas at the same REAs or ”2σ” intervals, now let’s
fix the area and compare REAs and ”2σ” intervals.

% DOP DOP+DIG DOP+DIG+INT ETS1 ETS2 OTS
Square 0.137 0.14 0.32 0.48 0.29 0.32
Middle 0.31 0.32 0.73 1.09 0.65 0.74
Long 0.54 0.59 1.24 1.86 1.13 1.24

Square 1.00 1.07 2.28 3.38 2.06 2.29
Middle 2.26 2.43 5.03 7.53 4.68 5.05
Long 3.80 4.18 8.79 13.19 8.00 8.82

Square 1.41 1.54 3.17 4.74 2.88 3.19
Middle 3.16 3.41 7.17 10.71 6.57 7.19
Long 5.55 5.85 12.35 18.6 11.29 12. 4

Square 2.00 2.15 4.51 6.73 4.10 4.53
Middle 4.48 4.86 10.17 15.24 9.22 10.21
Long 7.65 8.41 17.5 26.11 15.88 17.54

Square 4.46 4.76 10.04 15.15 9.21 10.08
Middle 10.07 10.67 22.90 34.09 20.61 22.94
Long 17.23 18.65 39.24 59.09 36.10 39.52

Table 6: Comparison between different scenarios: REA at 100 ha(first - third line), 2ha
(4th - 6th line), 1 ha (7th - 9th line), 0.5 ha(10th to 12th line), 0.1 ha (13th to 15th line)
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% DOP DOP+DIG DOP+DIG+INT ETS1 ETS2 OTS
Square 0.27 0.27 0.63 0.94 0.58 0.63
Middle 0.61 0.62 1.44 2.13 1.28 1.44
Long 1.06 1.15 2.43 3.66 2.22 2.45

Square 1.97 2.10 4.47 6.63 4.04 4.49
Middle 4.69 4.75 9.85 14.76 9.18 9.89
Long 8.19 8.21 17.23 25.85 15.67 17.28

Square 2.76 3.01 6.22 9.28 5.65 6.24
Middle 6.68 6.68 14.04 21.00 12.88 14.10
Long 11.39 11.47 24.20 36.46 22.14 24.30

Square 3.91 4.22 8.84 13.19 8.03 8.88
Middle 9.36 9.51 19.95 29.89 18.07 20.01
Long 16.07 16.49 34.30 51.18 31.13 34.38

Square 8.73 9.32 19.67 29.69 18.06 19.75
Middle 21.01 20.90 44.89 66.81 40.40 44.96
Long 35.97 36.55 76.9 115.81 70.76 77.46

Table 7: Comparison between different scenarios: ”2 σ” interval at 100ha (first - third
line), 2ha (4th - 6th line), 1 ha(7th - 9th line), 0.5 ha (10th to 12th line) and 0.1 ha (13th
to 15th line)

6 Further examples

6.1 3 cases of rectangles - different parameters

In previous chapter we have seen examples for all six types - DOP, DOP + DIG, DOP +
DIG + INT, ETS1, ETS2 and OTS for one set of parameters, (DOP, DIG, INT) = (1 m,
0.4 m, 1m) and some variantions of that in ETS1, ETS2 and OTS types. For each type
there was a REA (or ”1 σ”) graph and ”2 σ” graph; in addition, some typical area values
at 3%, 5%, 7% and some typical REA (relative area uncertainty) at A = 100 ha, 2 ha, 1
ha, 0.5 ha, 0.1 ha were listed.

We would like to compare previous results with a little change in some parameters – only
for a few representative graphs and numbers.

• DOP: the only parameter is uncertainty of a vertex, RMSE = 0.2 m. Set of param-
eters is (0.2 m, 0, 0).

• DOP + DIG: 2 parameters, uncertainty of a vertex and uncertainty caused by
digitalization. Set of parameters is (0.2 m, 0.4036 m, 0).

• DOP+ DIG + INT: 3 parameters, RMSE, uncertainty caused by digitalization and
uncertainty caused by interpetation. Set of parameters is (0.2 m, 0.4036 m, 1m).

• ETS1: comparison of two cases, first is DOP + DIG + INT with parameters (0.2
m, 0.4 m, 1m), second is DOP + DIG with parameters (0.4m, 0.4036 m, 0) - in the
second case we take bigger RMSE.
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On Figure 35 we see the linear scale example for DOP. If we compare it to Figure 22, we
can see that REA at the same area is smaller in the case of DOP = 0.2m.
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Figure 35: Linear scale example for DOP with RMSE = 0.2 m

This is even more obvious if we look at the logarithmic scale – Figure 36 for DOP and
compare it to DOP with RMSE = 1m – Figure 23. For instance, at A = 0.1 ha, REA ≈
1.5% (square) for RMSE = 0.2 m, while at RMSE = 1m REA ≈ 4.5% (square).

On Figure 36 we can see DOP + DIG, REA example for set of parameters (DOP, DIG,
INT) = (0.2 m, 0.4 m, 0), on Figure 38 is a DOP + DIG + INT, REA example for set of
parameters (DOP, DIG, INT) = (0.2 m, 0.4 m, 1m) and on Figure 39 is a DOP + DIG +
INT, ”2 sigma” example for the same set of parameters. On Figure 40 we can see ETS1
scenario, ”2 σ” example with parameters (DOP, DIG, INT) = (0.2 m, 0.4 m, 1m) for the
first case and (DOP, DIG, INT) = (0.2 m, 0.4 m, 0) for the second case.

In Table 8 are listed relative area uncertainties for ”2 σ” interval for the above exam-
ples.
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Figure 36: DOP, REA for RMSE = 0.2 m; red line – long rectangle, green line – middle
rectangle, blue line – square
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Figure 37: DOP + DIG, REA for RMSE = 0.2 m; red line – long rectangle, green line –
middle rectangle, blue line – square
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Figure 38: DOP + DIG + INT, REA for RMSE = 0.2 m; red line – long rectangle, green
line – middle rectangle, blue line – square
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Figure 39: DOP + DIG + INT, ”2 σ” interval for RMSE = 0.2 m; red line – long rectangle,
green line – middle rectangle, blue line – square
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Figure 40: ETS1, ”2 σ” interval for RMSE = 0.2 m (first case) and RMSE = 0.4 m
(second case); red line – long rectangle, green line – middle rectangle, blue line – square
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% DOP DOP+DIG DOP+DIG+INT ETS1
Square 0.05 0.12 0.56 0.57
Middle 0.12 0.27 1.27 1.30
Long 0.21 0.48 2.18 2.23

Square 0.39 0.87 3.9 4.02
Middle 0.88 1.96 8.9 9.11
Long 1.51 3.41 15.25 15.53

Square 0.54 1.21 5.64 5.75
Middle 1.22 2.77 12.64 12.87
Long 2.08 4.80 21.7 22.08

Square 0.78 1.73 8.0 8.08
Middle 1.76 3.93 18.1 18.43
Long 3.00 6.71 31.0 31.48

Square 1.68 3.76 17 17.54
Middle 3.79 8.62 38.30 39.52
Long 6.60 14.86 66.95 68.20

Table 8: Comparison between different scenarios: ”2 σ” interval at 100ha (first - third
line), 2ha (4th - 6th line), 1 ha(7th - 9th line), 0.5 ha (10th to 12th line) and 0.1 ha (13th
to 15th line).

6.2 Shorter segments

So far we have always studied rectangles (or triangles) with fixed number of vertices –
4 for rectangles or 3 for triangles. Does our simulation give different results if we add
vertices to polygons – in analogy to the real world, is it better to make shorter segments?

On Figure 41 (a) we can see an example of a rectangle with four original vertices (green
points); on Figure 41 (b) the red points are the added vertices. Now we perform Monte
Carlo on all vertices, the old ones and the new ones and compare results.

(a) (b)

Figure 41: (a) The original rectangle with four vertices; (b) rectangle, transformed into
polygon with shorther segments – the red points are the added vertices.

On Figures 42 we can see the comparison between two absolute area uncertainties
- the green one represents the original rectangle and the red one the one with shorter
segments. On Figure 42 (a) the segment is relatively long in comparison to a (on interval
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[0, a] we pick side length) – l/a = 0.8 and both uncertainties are practically equal. On
Figure 42 (b) the segment is middle length l/a = 0.5 and we can see that uncertainty is
smaller. If the segment is much smaller than the side, like l/a = 0.1 on Figure 42 (c) we
can see that area uncertainty obviously falls significantly. The segments also can not be
too short – the same rule applies to them, two vertices must be at least at 3 σ0 distance.
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Figure 42: Comparison of area uncertainty for original rectangle (green points) and rect-
angle with segments (red points); length of segments (a) l/a = 0.8, (b) l/a = 0.5, (c)
l/a = 0.1, where a is the length of interval from which we pick side length.
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Let’s compare how shorter segments work for the 3 cases of rectangles. On Figure 43 we
can see the comparison for DOP with RMSE = 1 m and segment length l = 30 m. The
red line as usually represents long rectangle, the green line middle rectangle and the blue
line square. The orange line represents long rectangle with segments, the turquoise line
middle rectangle with segments and the violet line square with segments.

First thing we can see is that REA for cases with segments is always smaller or at least the
same as REA for cases without segments. Not only that – when we enlarge the sides of
the ractangles, the length of the segment stays the same - that is why lines that represent
segments fall much faster that the lines of the original rectangles. In case of square and
middle rectangle we can see that both cases stay the same untill some area – that is untill
both sides are shorter than the length of the segment.
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Figure 43: DOP, REA with RMSE = 1m and segment length l = 30 m; comparison
between the original rectangles and the ones with segments; red line – long rectangle, green
line – middle rectangle, blue line – square, orange line – long rectangle with segments,
turquoise line – middle rectangle with segments, violet line – square with segments.
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7 Conclusion

In this study of area uncertainty we have looked at some properties on which area un-
certainty depends on: area, perimeter, area at a constant perimeter etc. For simulation
we used Monte Carlo method. First, we have made a general model for triangles where
we learned that relative area uncertainty (REA) gets smaller when area gets larger but
on the other hand at one particular area we can have many values of REA. This gave us
the idea that area uncertainty maybe also depends on shape, not only on area value. We
have looked at area uncertainty dependancy on perimeter and from there we have seen
that area uncertainty is limited between two special types of triangles: regular-like ones
and isosceles-like ones with very small angles between sides of equal length. We have also
checked the limit cases where convergence to these two borders is not true anymore and
from there we have learned that the length of the side of a polygon should not be smaller
than vertex uncertainty times three if we want our numerical model to give proper re-
sults. We have compared numerically defined area uncertainty with analytically and have
concluded that they are most alike at regular shapes. We have done some buffer analysis
but that did not tell us anything new.

We have studied the same properties also for rectangles, the results were comparable.
Again we have seen how much area uncertainty (absolute and relative) depends on shape.
We have made a comparison for three cases of rectangles and different input uncertain-
ties – comparable to digital ortophoto (DOP), digitalization uncertainty (DOP + DIG),
interpretation error(DOP + DIG + INT). Then we made three other types of calculating
uncertainty – ETS1, ETS2 and OTS where we compared two digitalizations and observed
the difference between them. For each of these types we have compared ”1 σ” interval
of distribution (equal to analytically calculated area uncertainty) and ”2 σ” interval (re-
producibility limit). At the end we have expanded basic model with adding vertices and
results have shown we can make area uncertainty smaller with this procedure.
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Uncertainty	  Composition	  
In  real-‐life  scenarios,  more  than  one  process  can  influence  the  measurement  of  a  variable.  Polygon  
area  measurement,  for  example,  is  influenced  by  the  uncertainty  in  the  reference  layer  (digital  
ortho-‐photo),  uncertainty  in  interpretation  of  the  polygon  border  as  well  as  uncertainty  in  the  
digitization.  

To  arrive  at  the  estimate  of  the  area  uncertainty  given  the  contributions  of  different  factors,  we  
need  to  look  at  how  the  final  error  in  area  is  constructed.  The  offset  of  the  measured  area  is  the  sum  
of  offsets  due  to  the  different  contributions:  

  

If  each  of  the  contributing  errors  is  normally  distributed  around  0  with  RMSE  of   1   2   3  
respectively  and  if  all  the  contributing  errors  are  independent,  then  the  estimate  for  the  resulting  
standard  deviation  is:  

  

Uncertainty	  of	  Relative	  Difference	  of	  Two	  Measurements	  
When  we  estimate  the  relative  area  error  (RAE)  from  two  measurements  of  the  same  polygon,  we  
have  to  take  the  uncertainties  of  both  measurements  into  account.  The  expression  for  RAE  is  
straightforward:  

	  

Differentiating  this  expression  with  respect  to  both  variables  A1  and  A2  gives  the  following  
expression:  

  

Assuming  small  errors,  we  can  set  A1=A2  and  write  the  expression  for  the  uncertainty  of  the  relative  
difference  as:  

  



Uncertainty	  of	  Polygon	  Area	  Derived	  from	  Point	  Position	  Error	  

1.	  Area	  error	  produced	  by	  independent	  point	  position	  error	  
The  area  of  a  polygon  can  be  written  as  the  sum  of  areas  under  individual  line  segments:  

  

Note  that  the  indices  in  the  expression  should  be  wrapped  cyclically  when  the  last  point  of  the  
polygon  is  reached.  We  can  re-‐write  this  expression  to  expose  only  the  terms  involving  xi  and  yi:  

  

Integration  of  the  uncertain  term  for  xi  times  its  normal  distribution  (with   xi)  yields  the  average  
contribution  of  the  term  to  the  area,  which  equals  the  term  itself:  

  

This  tells  us  that  the  mean  area  of  the  polygon  with  uncertain  vertices  will  be  the  same  as  the  area  
calculated  from  the  mean  vertex  positions.  In  other  words,  area  calculated  from  the  mean  vertex  
positions  is  an  unbiased  estimator  of  the  true  polygon  area.  

To  arrive  at  an  estimate  of  the  standard  deviation  of  the  area  measurement,  we  have  to  integrate  
the  square  of  the  area  difference  between  the  uncertain  and  the  true  polygon.  We  square  the  whole  
sum  that  is  needed  to  compute  the  area,  but  most  of  the  terms  involve   xi  or   yi  in  the  first  power,  
and  can  be  removed  due  to  the  symmetry  of  the  normal  distribution:  

  

Integral  over   xi  then  yields:  

  

The  term  with  y  coordinates  of  the  neighbouring  points  represents  the  independent  contribution  of  
the  ordinate  xi  to  the  uncertainty  of  the  polygon,  while  the  two  terms  containing  the  neighbouring  

n  of  the  neighbouring  points  on  the  measured  area  
uncertainty.    

All  these  terms  will  be  further  integrated  to  account  for  uncertainty  in  all  other  points,  and  finally  
produce  the  following  expression  for  the  total  area  uncertainty  (factor  1/2  comes  from  the  fact  that  
the  terms  from  the  expression  in  the  sum  will  be  included  at  other  indices):  



  

In  case  of  isotropic  error  ( xi=   yi=   i),  this  simplifies  to:  

  

In  case  all  points  have  the  same  error  ( i=   )  the  expression  becomes:  

  

This  tells  us  that  the  variance  (square  of  RMSE)  of  area  measurement  is  proportional  to  the  sum  of  
  The  small  term  outside  the  sum  is  significant  

only  in  case     is  comparable  to  the  length  of  the  diagonals  (but  still  smaller     see  next  paragraph).  

Note  that  this  expression  does  not  take  into  account  extremely  thin  polygons,  where  special  
provisions  should  be  taken  in  the  uncertainty  analysis  to  rule  out  any  combinations  of  point  offsets  
that  would  produce  invalid  geometries,  such  as  self-‐intersecting  polygons,  reversed  orientations  etc.  

2.	  Area	  error	  produced	  by	  correlated	  offset	  from	  the	  true	  boundary	  
When  the  measured  polygon  boundary  is  offset  from  the  true  boundary  by  distance  ds (in this case 
the individual point measurements are not independent, but are strongly correlated),  either  to  the  
outside  or  to  the  inside  of  the  polygon,  the  offset  of  the  measured  area  can  be  approximated  with:  

  

Here  l  denotes  the  length  of  the  polygon  boundary  (including  holes)  while  Nout  and  Nin  denote  the  
number  of  outer  and  inner  rings,  respectively.  The  first  term  clearly  represents  the  (signed)  area  
created  by  offsetting  each  line  segment  by  ds,  while  the  second  term  is  produced  by  summation  of  
the  areas  of  circular  sectors  that  fill  in  the  gaps  between  the  offset  line  segments  (see  Figure).  

  



For  any  closed  ring,  the  sum  of  angles  generating  the  circular  sectors  will  be  360°,  making  their  total  
area  equal  the  area  of  a  full  circle;  for  holes,  the  sum  of  angles  will  be  negative.  

Integrating  the  expression  for  the  area  offset  using  a  normal  distribution  for  ds  (with  standard  
deviation   s)  yields  the  total  uncertainty  of  the  area:  

  

Interestingly,  this  expression  mostly  depends  on  the  total  length  of  the  polygon  boundary  (in  case  
the  polygon  has  exactly  one  hole,  this  is  true  exactly),  and  is  only  slightly  influenced  by  the  number  
of  holes  in  the  polygon  (and  outer  rings  for  a  multi-‐polygon).  In  this  approximation,  the  measured  
area  does  not  depend  on  the  number  of  points  digitized  or  the  shape  of  the  boundary  at  all.  

Note  that  while  the  approximation  is  quite  correct  for  positive  offsets  and  convex  vertices,  it  is  
somewhat  flawed  in  case  of  concave  angles  or  negative  offsets,  as  the  area  subtracted  from  the  
polygon  is  smaller  than  the  area  that  is  covered  by  the  two  neighbouring  rectangles  (see  Figure).  This  
is  hardly  relevant  for  obtuse  angles,  but  could  be  quite  significant  for  acute  angles.    

  

   	  



About	  RMSE	  and	  95%	  confidence	  interval	  in	  the	  normal	  distribution	  
Root-‐mean  square  error  (RMSE  or     or  standard  deviation)  is  a  property  of  the  probability  density  
function  (PDF,  also  called  error  or  probability  distribution),  that  provides  a  measure  of  the  

( ).  The  following  equations  show  the  
relations  for  the  mean  and  RMSE,  for  continuous  PDFs  (left)  and  for  a  list  of  N  imprecise  
measurements  (right):  

  

A  normal  distribution  (also  called  Gaussian)  centred  at  0  is  only  parameterized  with  its  width   ,  
  

  

  
Figure  1:  Normal  distribution  centred  at  0  

It  can  be  seen  from  the  distribution,  that  the  probability  is  highest  around  the  mean  (zero  in  the  case  
of  our  figure),  but  there  is  also  significant  probability  of  a  measured  value  being  up  to  3  

rom  the  mean  can  easily  be  
calculated:  

  

This  tells  us  that  for  a  normal  distribution,  
   The  farther  from  the  mean  
we  go,  higher  percentage  of  the  measured  values  will  fall  within  the  selected  interval.  If  we  would  
like  to  know  how  far  from  the  mean  we  need  to  go  to  find  95%  of  all  measured  values,  the  result  is  
easily  found  by  integrating  to  find  the  area  under  the  probability  density  function:  

  



So,  in  a  normal  distribution,  95%  of  all  values  will  fall  in  the  interval  whose  boundaries  are  1.96  
away  from  the  mean  on  either  side.  This  is  illustrated  on  the  following  diagram:  

  

Figure  2:  68%  of  all  the  values  fall  between   -‐1.96     

   	  



Statistical	  Analysis	  of	  Slovenian	  LPIS	  Data	  

Area	  of	  an	  individual	  parcel	  

  

  

  

  



  

The  height  of  the  lines  in  an  area-‐weighed  distribution  shows  the  total  area  of  the  parcels  which  fall  
into  the  bin,  as  opposed  to  the  frequency  distribution,  which  just  shows  the  count.  Area-‐weighed  
distribution  is  useful  for  establishing  significance  of  certain  kinds  of  samples  (e.g.  parcels  with  small  
boundary  length)  in  terms  of  the  sum  of  area  they  cover.  



	  

  

  

  



  

	  

  

  



  

  

     



	  

  

  

  



  

Effect	  on	  the	  total	  area	  of	  all	  parcels	  
Total  Area  =      479  661  ha  

*Average  Relative  Uncertainty  =      5.81  %  
*Sum  of  Absolute  Uncertainties  =        7492  ha  

   1.56  %  

Uncertainty  of  Total  Area  =      9.8  ha  

Relative  Uncertainty  of  Total  Area  =      0.002%  

*  items  marked  with  asterisk  are  not  relevant  for  the  analysis  of  the  total  area  

Thresholds	  Applied	  to	  95%	  Confidence	  Interval	  
95%  THRESHOLD   0..0.2  ha   0.2..0.5  ha   >0.5ha  
>3%   35.83  %   10.22  %   1.38  %  

>5%   24.02  %   3.02  %   0.18  %  
>7%   16.30  %   1.18  %   0.02  %  
  

  


